Addressing the Path-Length-Dependency Confound in White Matter Tract Segmentation
نویسندگان
چکیده
We derive the Iterative Confidence Enhancement of Tractography (ICE-T) framework to address the problem of path-length dependency (PLD), the streamline dispersivity confound inherent to probabilistic tractography methods. We show that PLD can arise as a non-linear effect, compounded by tissue complexity, and therefore cannot be handled using linear correction methods. ICE-T is an easy-to-implement framework that acts as a wrapper around most probabilistic streamline tractography methods, iteratively growing the tractography seed regions. Tract networks segmented with ICE-T can subsequently be delineated with a global threshold, even from a single-voxel seed. We investigated ICE-T performance using ex vivo pig-brain datasets where true positives were known via in vivo tracers, and applied the derived ICE-T parameters to a human in vivo dataset. We examined the parameter space of ICE-T: the number of streamlines emitted per voxel, and a threshold applied at each iteration. As few as 20 streamlines per seed-voxel, and a robust range of ICE-T thresholds, were shown to sufficiently segment the desired tract network. Outside this range, the tract network either approximated the complete white-matter compartment (too low threshold) or failed to propagate through complex regions (too high threshold). The parameters were shown to be generalizable across seed regions. With ICE-T, the degree of both near-seed flare due to false positives, and of distal false negatives, are decreased when compared with thresholded probabilistic tractography without ICE-T. Since ICE-T only addresses PLD, the degree of remaining false-positives and false-negatives will consequently be mainly attributable to the particular tractography method employed. Given the benefits offered by ICE-T, we would suggest that future studies consider this or a similar approach when using tractography to provide tract segmentations for tract based analysis, or for brain network analysis.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملReference Tracts and Generative Models for Brain White Matter Tractography
Background: Probabilistic neighborhood tractography aims to automatically segment brain white matter tracts from diffusion magnetic resonance imaging (dMRI) data in different individuals. It uses reference tracts as priors for the shape and length of the tract, and matching models that describe typical deviations from these. We evaluated new reference tracts and matching models derived from dMR...
متن کاملImproved Reference Tracts for Unsupervised Brain White Matter Tractography
Neighbourhood tractography aims to automatically segment equivalent brain white matter tracts from diffusion magnetic resonance imaging (dMRI) data in different subjects by using a “reference tract” as a prior for the shape and length of each tract of interest. In the current work we present a means of improving the technique by using references tracts derived from dMRI data acquired from 80 he...
متن کاملProbabilistic combination of tractography data from multiple seed points for white matter segmentation
Introduction Segmentation of specific tissue regions from magnetic resonance images for comparative analysis necessitates a tradeoff between maximizing coverage of the structure of interest and minimizing the inclusion of other tissues. For the case of white matter tracts, a reasonable approach is to focus on a “core” of the tract where partial volume effects are likely to be minimal. This is t...
متن کاملStreamline Flows for White Matter Fibre Pathway Segmentation in Diffusion MRI
We introduce a fibre tract segmentation algorithm based on the geometric coherence of fibre orientations as indicated by a streamline flow model. The inference of local flow approximations motivates a pairwise consistency measure between fibre ODF maxima. We use this measure in a recursive algorithm to cluster consistent ODF maxima, leading to the segmentation of white matter pathways. The meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014